翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gegenbauer polynomial : ウィキペディア英語版
Gegenbauer polynomials
In mathematics, Gegenbauer polynomials or ultraspherical polynomials ''C''(''x'') are orthogonal polynomials on the interval () with respect to the weight function (1 − ''x''2)''α''–1/2. They generalize Legendre polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. They are named after Leopold Gegenbauer.
==Characterizations==

Mplwp gegenbauer Cn05a1.svg|Gegenbauer polynomials with ''α''=1
Mplwp gegenbauer Cn05a2.svg|Gegenbauer polynomials with ''α''=2
Mplwp gegenbauer Cn05a3.svg|Gegenbauer polynomials with ''α''=3
Gegenbauer polynomials.gif|Gegenbauer polynomials

A variety of characterizations of the Gegenbauer polynomials are available.
* The polynomials can be defined in terms of their generating function :
::\frac=\sum_^\infty C_n^(x) t^n.
* The polynomials satisfy the recurrence relation :
::
\begin
C_0^\alpha(x) & = 1 \\
C_1^\alpha(x) & = 2 \alpha x \\
C_n^\alpha(x) & = \frac(- (n+2\alpha-2)C_^\alpha(x) ).
\end

* Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation :
::(1-x^)y''-(2\alpha+1)xy'+n(n+2\alpha)y=0.\,
:When ''α'' = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials.
* They are given as Gaussian hypergeometric series in certain cases where the series is in fact finite:
::C_n^(z)=\frac
\,_2F_1\left(-n,2\alpha+n;\alpha+\frac;\frac\right).
:(Abramowitz & Stegun (p. 561 )). Here (2α)''n'' is the rising factorial. Explicitly,
::
C_n^(z)=\sum_^ (-1)^k\frac(2z)^.

* They are special cases of the Jacobi polynomials :
::C_n^(x) = \frac)_}P_n^(x).
:in which (\theta)_n represents the rising factorial of \theta.
:One therefore also has the Rodrigues formula
::C_n^(x) = \frac\frac(1-x^2)^\frac\left().

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gegenbauer polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.